Dataflow programming method

Dataflow programming is a style of programming that models computation as
the flow of data through interconnected nodes and is processed by them
according to their internal algorithm. This makes it easier for developers to
visualize and understand complex computations since they can trace all
operations back to input values.

Dataflow programming method

Introduction

This document describes the Proavatar's dataflow programming' method which can be used to
implement mathematical algorithms that process timestamped sensor data and generate
specific output values that are to be reported or displayed to a user.

Settings

¥

Timestamped sensor data Results

Figure 1: Basic set-up of a sensor data processing algorithm.

When such algorithms are part of a user-facing application, for example on a smartphone,
hardcoded algorithms would require an update for each little change to the algorithm. In
contrast, with Proavatar's dataflow programming method a diagram can be specified as a JSON
text file that can be easily shared, exchanged, stored and accessed in online databases.

In such a diagram, the algorithm is implemented by specifying the inputs, outputs and the
sequence of interconnected functions to calculate the outputs from the inputs. Whilst
theoretically these dataflow diagrams can be written in a text-editor, Proavatar offers

graphical tools to visualize dataflow diagrams and construct them in a simple and intuitive
manner.

' Wikipedia - Dataflow programming

Dataflow programming method

Algorithm architecture

Consider an algorithm that takes one or more sensor data streams as input and calculates
some kind of output. These outputs can then be used by a connected reporting system (the
executing application), which may include a graphical user interface (GUI).

Then an algorithm is constructed - or implemented - by creating a dataflow diagram that uses
input streams and a number of interconnected functions to calculate the value of one or more
variable outputs of specific types (variable types are discussed in the next chapter). Any
settings of the diagram are implemented by using constants and these can be changed by the
executing application.

The architecture of an algorithm is given in figure 2.

Constants

Variable outputs

Input streams

<Description>

“““ Functions R anan

Reporting system

<Dascription> ‘ <Description>

Sensor system

Figure 2: Algorithm architecture.

In the following sections the components of a dataflow diagram are discussed.

Dataflow programming method

Timestamped variables

A dataflow diagram uses several timestamped variables. These variables can contain basic
values, compound data types or arrays.

Basic values

In table 1 the variable types are defined that can be used in a dataflow diagram to store the
basic values commonly available in most programming languages. The symbol is used to
identify the value in the diagram and discussed further in (see "Timestamped variables in the

diagram").

Table 1: Dataflow basic values.

Name Description Symbol
Float? Floating point value, used for angles and other values. f
Integer Integer value, used for indices and numbers. i
Boolean | Logical value, i.e. true or false. b
String A piece of text. $

Compound data types

Since the dataflow programming is specifically suited for processing timestamped sensor data,
it is very useful to also have compound data types®. The ones that are available in the dataflow
programming method are defined and given in table 2.

Table 2: Dataflow compound data types.

Name Description Symbol
Vector A 3D position where the 3 coordinates x, y and z are floats.. v
Orientation | An orientation, expressed as a quaternion with the imaginary coordinates x, y, z and real q
value w as floats.
Sequence An array of timestamped floats, i.e. ((z), £)) , ... » (txs »fy-D)]: s
Arrays

Next to the specified types, it is also possible to create arrays. These are also timestamped
variables but contain a collection of values or compound data. There is an array for each type.

Conforming to most programming languages, in a dataflow diagram an array is indicated by
placing the symbol of the variable between square brackets, e.g. [f]. [1]. etc.

2 A float is a data type composed of a number that is not an integer, because it includes a fraction represented in
decimal format.

Dataflow programming method

The elements in an array can be accessed (via functions) via a zero-based index, meaning that
the first element has index O.

Timestamped variable in diagrams

The symbol of a timestamped variable is used to indicate the type of a connector of a node in a
diagram. An example is given in figure 3 where a function node (discussed further in
"Functions") is shown with two input connectors and one output connector.

!
Input connectors ! | Qutput connectar
i

Figure 3: Typed connectors.

A timestamped variable has a number of relevant properties which are given in table 3 and
that are used during the execution of the diagram (discussed in “Diagram execution”).

Table 3: Relevant properties of a timestamped variable.

Property Description

value The actual value for which the type is defined by the type of the variable itself as give in table 1.
updated Boolean indicating whether the value was updated.
checked Boolean indicating whether the timestamped variable can be evaluated as its updated state will

not change during the ongoing execution.

timestamp | Timestamp at which the variable was last updated.

Dataflow programming method

Nodes

All the elements in a diagram are called nodes. A node has one or more connectors, depending
on the type. The possible node types are given in table 4.

Table 4: Node types.

Type Description Input Output
connectors connector
Function Generates a certain output by performing an internal calculation using Multiple v/
its inputs.
Constant | Stores a constant value. X v
Input Generates an output when it is updated by an external process. X v
stream
Variable Store the result of the execution of the dataflow diagram. 1 X
output
Container | A node that can be constructed by the diagram editor to assist in Multiple v/
visually simplifying the diagram and can contain a number of internal
function nodes, constant nodes or nested containers.

For visualization purposes, a node in the diagram can be given a specific color. The following
options are available:

Color Hexadecimal code Color Hexadecimal code

blue #0000FF green #008000
red #FFOOOO magenta #FFOOFF
black #000000 orange #FFAS00
brown #A52A2A purple #800080
#00FFFF #FFFFOO
gray #808080 #FFFFFF

Also, for all nodes, except function nodes, a ‘description’ can be edited which appears in the
body of the node when displayed. For function nodes the description specifies the internal
algorithm that it implements.

Dataflow programming method

Functions

The core components of a dataflow diagram are function nodes. There is a large variety of
function nodes which can be selected from a list and have one or more inputs (depending on
the type of function) and a single output. In figure 4 an example of such a function node is
given with two input connectors and one output connector.

o Output connector

Description

Figure 4: Example of a function node.

The inputs and output are of specific variable types. For example, the function node in figure 4
implements the functionality to round a float (f) to a specified number of decimal places,
specified by the integer (i) input.

Since the concept of a data ‘flow' is used, in general a function node calculates (i.e. updates) its
output when all inputs are updated. In the concept of dataflow programming, the dataflow
‘assumes’ sequential updates of the inputs. Therefore, the function node will ‘wait’ for the
updates of all inputs. When the output is calculated, the inputs are set back to their “not
updated” state. This process is illustrated in figure 5.

Not
updated

°N°'

Update!
Rotate vector 2. Rotate vector . Rotate vector

o o
Rotate vector update 5. Rotate vector undate . Rotate vector

—)
Update!

Figure 5: Function node update process.

Note that when one of the input updates a number of times consecutively, these updates are
not used (ie. lost) unless the other input(s) are also updated. Also, the timestamp of the
generated output will always have the timestamp of the last updated input value.

There are also function nodes that use the value of the first input to determine how the other
inputs are to be used. A simple example is the “Gate” function as illustrated in figure 6.

Output float >
Input float f

The “Gate” function will forward an updated second input only when the first input is true.

true

Gate control

Figure 6: “Gate” function.

Dataflow programming method

Generic functions

In the dataflow programming method presented here, strict typing is used to prevent type
mismatch errors. As such for most functions the connectors have a specific fixed type.
However, strictly this would mean that for each specific operation that can be performed on
several types - for example addition - separate functions would be required. This is obviously
impractical. Therefore, the concept of generic functions is introduced that have generic
connectors for which the type is not specified yet prior to connecting it.

There are the following generic indicators.

Table: Generic indicators.

Name Description Indicator

*

Generic variable | An untyped timestamped variable that can be a value, compound data
type or an array.

Generic value An untyped timestamped value or compound data type, not being an array. ?

Generic array An array for which the type is not yet specified. [?1

As an example, consider the function node in figure 7 which performs an addition of two
values. The type will be specified as soon as one of the connectors is connected (also see
“Connections”).

0
0
H® = - R
- O
.

Figure 7: Example of a function with generic variable inputs that are specified when connected.

The connectors do not all have to belong to the same category. For example, in figure 8 two
other examples are given of generic functions.

Add to array

Figure 8: Generic functions.

Dataflow programming method

Constants

A constant node can hold a fixed value of a certain variable type which is specified when the
dataflow diagram is designed. In figure S an example of a constant node is given.

In the visualization of a constant node, the value is displayed above the node except when the
constant represents an array because that would be impractical to display as a string. The
description “Float” in the example in figure 9 can be changed, for example to describe the
purpose of the constant.

1.23

Figure 9: Constant node.

The output of a constant node can be connected to the input of one or more function nodes.
When this is done, a function node will obviously not ‘wait’ for that input to be updated but
calculate its output as soon as all the inputs are updated that are not connected to a constant
node.

Typical usages of constant nodes could be the specification of axes, size of buffers, indication
of indices or other ‘settings’ of the algorithm. In figure 10 an example is given where a vector
constant is used to determine the direction of the z-axis as a result of the rotation of the left
upper leg (made available via an input stream which node type is discussed in "[nput streams").

(0.0, 0.0, 1.0)

Rotate vector

Left upper leg

Figure 10: Example of a vector constant.

While the output of a constant node is a timestamped variable - and can be handled
accordingly - the timestamp is obviously not defined and as such is set to NaN*
("not-a-number").

“NaN - Wikipedia

Dataflow programming method

Input streams

An input stream node offers a certain data stream on its output. An example of input stream
nodes is given in figure 11 where the input stream node with the name “Left upper leg” supplies
a timestamped orientation (q) and the one with “Right knee" supplies a position (v).

Left upper leg o Right knee °

Figure 11: Input stream nodes.

Because the input stream node is the beginning of the dataflow diagram, it has no inputs.
Instead, the input stream node is updated by the application whenever new data is available,
e.g. at each timestep.

There is an input stream node for all variable types.

Note that in the diagram it is possible and allowed to have any number of similar input stream
nodes (i.e. with the same description and same type) which are then updated with the same
value by the application. This can be used as a convenient way of using the same input at
several locations in the diagram.

By default, the value that is supplied to the input stream node by the application is also offered
as an output of the diagram (see "Variable outputs"). This is graphically indicated by the extra
line printed at the right of the node as illustrated in figure 12. When forwarding is disabled, like
is the case in the two input stream nodes in figure 11, the line is not shown.

Left upper leg 0

Figure 12: Input stream node with forwarding enabled.

Dataflow programming method

Variable outputs

To be able to present the results of the execution of a dataflow diagram (also see “Diagram
execution”), a variable output node is defined. There is a variable output node for each variable

type.

In figure 13 the setup of a variable output node is shown. To be able to identify the value, the

description “Float” can be changed.

Figure 13: Variable output node.

When the input of a variable output node is updated, the connected system is informed with
the description and the value. It is then up to the implementation of the connected system to
use (or ignore) the value.

Note that a variable output node can also be of great help when debugging algorithms by
supplying intermediate values, e.g. much like a debug statement in normal coding practice.

The description of a variable output node must be unique in the diagram and no other variable
output node must exist with the same description, even if the types are different.

To indicate that the description of a variable output node is not unique, a red line is printed at
the right side of the node as illustrated in figure 14.

° Result

Figure 14: Error line indicating that the description of the variable output node is not unique.

-10-

Dataflow programming method

Connections

To implement the functionality of creating a chain of executed function operations, i.e. to let
data ‘'flow’ a connection can be created between the output of a node and the inputs of one or
more other nodes.

Creating a connection

To implement the functionality of creating a chain of executed function operations, i.e. to let
data ‘flow, the output of a node can be connected to the input of another node in case of
matching variable types or either one being a generic connector. An example of interconnected
function nodes is given in figure 15.

Figure 15: Example of interconnected function nodes where the data ‘flows’ from left to right.

To create a connection an output and input connector must be selected that are of the same
type or either one is a generic connector. For example, in figure 16 the last connection will be
created when the float input connector of the variable output node is selected. An input can
only be connected to one output, but an output can be connected to any number of inputs.

(0.0, 0.0, 1.0)

Height

Figure 16: Connecting nodes.

Unsupported connections

In "Generic functions" the concept was introduced in which one or more connectors of specific
functions don't have the type of one or more of their connectors of a predefined type. However,
not all generic functions support all types. For example, the "Divide" function does not support
booleans and strings, or their arrays since performing a division on a boolean or string would
have no meaning. For a function that has generic connectors it is possible to connect these
types but the connector will be colored red to indicate that the type is not supported. This is
illustrated in figure 17.

rar>
false

<
Boolean
Boolean
Divide
Divide
Boolean
Boolean

Figure 17: Connecting unsupported types to a generic function.

Note that the function will not output any updates when the inputs are updated in this case.

-1-

Dataflow programming method

Containers

Potentially, dataflow diagrams can become quite large. This makes it difficult to quickly assess
the implemented functionality. It would be helpful if certain functionality which is implemented
in a set of interconnected nodes could be collapsed into a ‘container’ Just like a regular
function, such a container would have a single output and one or more inputs.

Containers can be created by selecting a humber of interconnected nodes, being functions,
constants or other container nodes.

The set of selected nodes that must become a container must comply with the following
requirements:

e The set does not contain any input stream or variable output nodes.
e There is only one node for which its output is not connected to any other nodes or has
connections to nodes outside the set of selected nodes.

In the diagram in figure 19 an example is given of a set of selected nodes (indicated by the red
border) that comply with these requirements.

o

Left elbow angle

Left lower arm

Figure 19: Set of nodes that can be collapsed into a container.

The set of selected nodes can be collapsed to a container. The default description “(Container]’
can be changed to something more descriptive.

o7

Left upper arm [Container]

Left elbow angle

e

\,

Left lower arm

Figure 20: Newly created container node.

A container is only for visual simplification of the diagram. It has no other effect on the data
processing. As such, the container still contains the interconnected nodes and can be expanded
again if so required.

-12-

Dataflow programming method

Sub-diagrams

Another method to get a better overview of the algorithm is to be able to divide the diagram in
sub-diagrams that can be displayed separately as individual diagrams.

To do this, a sub-diagram can be specified with a name describing the functionality
implemented and the nodes that are contained in it.

Similarly to containers, sub-diagrams only serve visualization purposes and have no other
effect on the data processing.

In the editor, a sub-diagram can be created and filled with nodes. A specific sub-diagram can be
shown by selecting a tab with the name of the sub-diagram.

13-

Dataflow programming method

Diagram local loops

The application is responsible for setting the values of the input stream nodes and having the
diagram update the variable output nodes. However a special situation occurs when variable
output nodes are specified that have the same description and variable type as one or more of
the input stream nodes. An example of such a diagram is shown in figure 21.

Double angle

Figure 21: Diagram with an internal looped variable.

In the diagram in figure 21 the external sensor system could update the input stream nodes
with the descriptions “Left upper arm” and “Left lower arm” first and when the execution of a
diagram results in an update of the variable output node with the description “Angle’, the input
stream node with the same description and type is updated as well.

As can be seen in figure 21, for a variable output node the loop is indicated with the extra line
printed to at the right of the node while at the input stream node the extra line is printed at the
left. Note that, for a looped input stream node, the forwarding (see "Input streams") is always
disabled as it can be seen as an internal variable of the diagram.

When there are several same input stream nodes with the same type and description as an
variable output node, all receive the same value. As such it makes sense to have a convenience
function that asks the user whether the description of the connected input stream nodes
needs to be changed when the description of a looped variable output node is changed.

In most cases where the update of a variable output node is used to update one or more input
stream nodes it would not make much sense to offer the update of the variable output node
also as output of the diagram to the application. Therefore, a variable output node can be
hidden, which is indicated by the % printed at the right of the node as illustrated in figure 22.

Radians to degrees Angle

Figure 22: Hidden variable output node.

A more detailed description on how diagram loops are used during the execution of a diagram
is given in the next chapter.

-14-

Dataflow programming method

Diagram execution

To determine the output of a dataflow diagram at a certain timestamp, the diagram must be
executed. This chapter describes this process because it is helpful for application developers to
have a basic understanding of how this is done.

The execution of a dataflow diagram at a certain timestamp is started by the external
application updating those input streams for which new data is available at a certain
timestamp. This will update all the connected inputs.

The next step that is performed is updating the outputs of the constant nodes, which in turn
will also update all the connected inputs.

Next, a loop is started that iterates over a list of function nodes and performs the following
actions:

1. It checks if all inputs of the current node are checked.

2. If all inputs are not checked, it sets the ‘allChecked’ variable to false and continues to

the next iteration of the for loop.

If all inputs are checked, it checks if all relevant inputs of the current node are updated.

4. If all relevant inputs are updated, it sets the ‘updated’ variable to true and runs the
internal algorithm of the current node.

5. After the for-loop has completed its iterations, it checks the values of the ‘updated’ and
allChecked’ variables. If either of these variables is false, it repeats the loop. If both
variables are true, it ends the loop.

w

This process can be written as pseudo-code:

updated = true
allChecked = false
WHILE updated OR NOT allChecked
updated = false
allChecked = true
FOR node IN nodes|["Function"]
check if all inputs of the function node are checked
inputsChecked = checkInputs (node)
IF NOT inputsChecked THEN
allChecked = false
CONTINUE
END IF
check if all relevant inputs of the function node are updated
relevantInputsUpdated = checkRelevantInputs (node)
IF relevantInputsUpdated THEN
updated = true
run the function node's internal algorithm
result = runAlgorithm(node)
END IF
END FOR
END WHILE

-15-

Dataflow programming method

Note that running the function node’s internal algorithm uses the input values. Therefore it is
necessary to check the input values first before using them. This is to support special function
nodes that do not wait for all their inputs to be updated. For these function nodes, checking the
input values ensures that its current value is up-to-date.

Depending on the result of running the function node’s internal algorithm, the ‘value’ property
of the timestamped variable associated with the output of the node could be set and when
that happens, the generic part is called in which the ‘updated’ property of the node's output is
set to true. It then enters a for-loop that iterates over the node's inputs. For each input, it sets
the ‘updated’ property to false and updates the ‘timestamp’ property of the node's output to
the maximum of its current value and the ‘timestamp’ property of the input.

After the first for-loop has completed its iterations, another for-loop is started that iterates
over the node's connected inputs. For each connected input, it sets the ‘value’ and ‘timestamp’
properties to the corresponding properties of the node's output and sets the ‘updated’ property
to true.

These actions can be specified by the following pseudo-code:

node.output.updated = true

node.output.timestamp = 0

FOR input IN node.inputs
input.updated = false
node.output.timestamp = MAX(node.output.timestamp, input.timestamp)

END FOR

FOR input IN node.connectedInputs
input.value = node.output.value
input.timestamp = node.output.timestamp
input.updated = true

END FOR

The process will continue until there are no more updates. At that point it is checked whether
the input of any of the variable outputs was updated. If this is the case, the execution process is
repeated, but now with the values of the updated variable outputs as input.

This allows for the implementation of diagram loops as discussed in “Diagram loops".

To prevent infinite loops, variable outputs will only be used once in this way.

-16-

Dataflow programming method

Dataflow diagram file format

A dataflow diagram is stored in a file with the ‘dfd’ extension which is formatted as a JSON file.
It has the following sections:

Section Description Type
nodes Array of generic node information. [NodeInfo]
properties Array of properties that can differ per node class. [PropertyInfo]
connections Connections between nodes. [ConnectionInfo]
positions Positions of the nodes. [PositionInfo]
containers Array of the information of the defined containers. [ContainerInfo]
manuallLines Optional array of strings containing the lines describing for example the | [String]

purpose of this diagram.
subdiagrams Optional list of sub-diagrams. [SubdiagramInfo]

Node that the information contained in the “positions” and “containers” section is only required
for visualization but not for execution.

The custom types specified above are described in the following sections.

Nodelnfo
Parameter Description Type
id Id of the node, unique within the file. Int
classString The class of the node, i.e. “Input stream’, “Constant’, *Function” or “Variable String
output”.
typeString The type of the node within the class, for example “Add" String
outputType Optional parameter used to indicate the variable type of the output for String?
function nodes with generic connectors.
Positioninfo
Parameter Description Type
id Id of the node for which this property must be set. Int
X X-coordinate of the position of the node. Float
y Y-coordinate of the position of the node, Float

-17-

Dataflow programming method

Containerinfo

Parameter Description Type
description Description given to the container. String

nodeIds Array of ids of the contained nodes. [Int]

color Optional parameter specifying the color. String?

X X-coordinate of the position of the container. Float

% Y-coordinate of the position of the container, Float
containers List of nested containers. [ContainerInfo]

Connectioninfo

Parameter Description Type

outputNodeId Id of the node for which the output connector is connected. Int

inputNodeId Id of the node for which one of the input connectors is connected. Int

inputIndex Index of the input connector that is connected. Int
Propertyinfo

Parameter Description Type

id Id of the node for which this property must be set. Int

propertyString Identifier of the property. String

valueString Textual representation of the value. String

The following propertyStrings are defined:

"OutputValue" = specifies the value of a constant.

“Color’ = specifies the name of the color.

“‘Description” = specifies the text as displayed in the body of the node.
"Forwarding" = specifies whether the input stream node forwarding is enabled.
"Hidden" = specifies whether the variable output node update is hidden as output.

Subdiagraminfo

Parameter Description Type
description Description given to the container. String
nodeIds Array of ids of the contained nodes. [Int]

-18-

Dataflow programming method

Example

Consider the following diagram.

Left upper arm

Joint angle Radians to degrees

Left lower arm

The contents of the “Joint angle” container is given below.

(0.0, 0.0, 1.0)

Pass-through

Rotate vector

Vector angle

Rotate vector

JSON

The corresponding diagram file formatted as a JSON string is as follows.

{"connections":[{"inputIndex":0,"outputNodeId":1, "inputNodeId":3},{"inputIndex":1, "outputNodeId":2,"inputNodeId":3},{"inputIndex":@, "outputNod
eId":3,"inputNodeId":5},{"inputIndex":0, "outputNodeId":4, "inputNodeId":1},{"inputIndex":@, "outputNodeId":4,"inputNodeId":2},{"inputIndex":0,"o
utputNodeId":5, "inputNodeId":0},{"inputIndex":1,"outputNodeId":6,"inputNodeId":1},{"inputIndex":1, "outputNodeId":7,"inputNodeId":2},{"inputInd
ex":@, "outputNodeId":8,"inputNodeId":4}], "properties":[{"id":@, "propertyString":"Description", "valueString":"Angle"},{"id":@, "propertyString":
":"Left upper

"Color","valueString":"purple"},{"id":6, "propertyString":"Description”,"valueString
arm"},{"id":7, "propertyString":"Description”, "valueString":"Left lower
arm"},{"id":8, "propertyString":"Description”, "valueString":"z-axis"},{"id":8,"propertyString":"OutputVvalue", "valueString":"(0.0, 0.0,
1.9)"}],"containers":[{"nodeIds":[8],"x":430,"y":210, "containers":[{"nodeIds":[1,2,3,4],"x":765,"y":545, "containers":[], "description”:"Angle"}
],"description”:"Joint angle"}],"manuallLines":["This is an example of a dataflow diagram with nested
containers."],"positions":[{"id":@,"x":940,"y":210},{"id":1,"x":980,"y":520},{"id":2,"x":980,"y":660},{"id":3,"x":1220,"y" :590},{"id":4,"x":73
0,"y":490},{"id":5,"x":690,"y":210},{"id":6,"x":140,"y" :150},{"id":7,"x" :140,"y" :260},{"id":8,"x":615,"y":415}], "nodes": [{"id":0, "classString"
:"Variable output","typeString":"Float"},{"id":1,"classString":"Function", "typeString":"Rotate

vector"},{"id":2,"classString":"Function", "typeString":"Rotate vector"},{"id":3,"classString":"Function","typeString":"Vector
angle"},{"id":4,"classString":"Function", "typeString":"Pass-through", "outputType":"Vector"},{"id":5, "classString":"Function", "typeString":"Rad
ians to degrees"},{"id":6,"classString":"Input stream","typeString":"Orientation"},{"id":7,"classString":"Input

stream", "typeString":"Orientation"},{"id":8,"classString":"Constant", "typeString":"Vector"}]}

-19-

